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Generally relief inventory models assume uniform or normally distributed demand pattern and unbounded 

planning horizon. This study formulates a relief inventory model for a limited relief operation duration. 

A large stock of relief items in a warehouse is not economical and causes shortage in other affected areas. 

Therefore inventory replenishment strategy is proposed for trapezoid type of demand distributions by 

changing parameter values. It is found that the system costs for all parameter values are stable. The order 

quantity in each replenishment cycle varies and has a certain pattern. A sensitivity analysis for several 

parameters are also presented.   
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1. INTRODUCTION  

A product’s demand is inversely proportional to its 

price. In a market economy, if a product’s price is 

higher, its demand is lower. Disaster victims receive 

relief goods free of cost and, therefore market 

economics in disaster logistics is absent. However, 

relief goods are distributed for alleviating the disaster 

victims’ suffering. Disaster logistics manager similar 

as commercial logistics manager also needs an 

inventory plan for effective utilization of relief items. 

If a large amount of the relief items are stocked in a 

single location, it will increase the holding cost and 

cause shortage in other locations. In a single-order 

policy, the relief items required for an inventory cycle 

are collected once at the beginning of a relief 

operations-period. However, relief items may be 

required at the later part of the relief operation. On 

the other hand, a multi-order policy may decrease 

holding cost because the policy encourages the 
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timely use of relief items, resulting in a lower holding 

cost.  

Relief demand characteristics are not well explored 

in literature. Disaster survivors need several types of 

relief items. After a disaster occurs, demand for aid 

supplies will likely change over time (Balcik and 

Beamon, 2008). Demands for some relief items are 

high in the aftermath of a disaster and decrease 

gradually. Two figures are illustrated below to 

explain the relief demand properties. Fig.  1 and Fig.  

2 are depicted based on the relief delivery to all 

shelters in Aoba ward, Sendai Japan after the 2011 

great east Japan earthquake. Sendai ward office, 

Japan distributed the relief items among different 

shelters. Aoba ward is one of the wards under the 

jurisdiction of Sendai. Each dot in the figures 

represents an event of delivery of relief items, not the 

delivered quantity of relief items. Data for initial four 

days were not available. Fig.  1 illustrates rice 

delivery to different shelters. As Sendai ward office 

did not face shortage of rice and water, we assume 

supply and demand of rice and water in Sendai region 

was similar. The demand for rice decreases gradually 

(as shown in Fig.  1). On the other hand trapezoidal 

demand trend is observed for water as shown Fig.  2. 

As relief demand is time sensitive, a logistics 

manager requires to prepare the warehouse facility 

and transport capacity for supporting time dependent 

demand.

  

 

Fig.  1 Linear decreasing of rice demand after the 2011 

great east Japan earthquake (based on author’s survey in 

Aoba ward) 

 

Fig.  2 Trapezoidal trend of water demand after the 2011 

great east Japan earthquake (based on author’s survey 

Aoba ward) 

 

 

Due to time stake nature, a disaster logistics manager 

confronts difficulties in collecting relief demand 

information. We aim to propose a mathematical 

model for inventory management to meet target 

demand. Our model will be implemented in pre-

disaster situation pursuing a push-logistical strategy. 

This model assumes that a secondary hub (SH) is 

responsible for collecting relief goods and delivering 

the collected relief goods to a local distribution center. 

This model assume that relief demand will become 

zero after a certain period. The system is designed for 

no shortage of relief goods. The relief operation 

period is fixed and the operation will be terminated 

after the planning horizon. 

The contributions of this research are as follows 

1. Traditional inventory models consider an 

unbounded planning horizon. This condition is 

not applicable to the relief inventory model, as 

the relief operation takes place over a certain 

period. Therefore, we propose a model for a finite 

horizon. 

2. The relief operation will end when the relief 

demand becomes zero. The relief demand may 

show a continuous decreasing trend or may show 

a trapezoidal demand trend. This study considers 

both types of relief demand. 
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The remainder of the paper is structured as follows. 

Section 2 presents mathematical notations and the 

assumptions of the proposed model. Section 3 

includes several sub-sections that explain the 

proposed model, and explains a solution algorithm. 

Section 5 reports the results of numerical analyses 

that use the proposed model. Finally, Section 6 

presents the conclusions of this study and a summary 

of the study results. 

 

2. ASSUMPTION AND DEFINITION 

The relief operation period is separated into several 

cycles. The length of the cycle and other operation 

properties are required to be planned before a disaster. 

A cycle starts at period j and ends at period k.  

1. The system operates for a prescribed H units of 

time (planning horizon). At time t = 0 and t =

H, the inventory level is zero. 

2. The lead time is constant. 

3. Shortages are not allowed in any cycle. 

4. At every replenishment, a variable lot size 𝑞𝑖 is 

ordered so as to meet demand in the target cycle 

length. 

In this system, we consider two types of costs: 

holding cost and replenishment costs. Holding costs 

have a tradeoff relationship with replenishment costs. 

The replenishment cost 𝐺𝑖  for the i-th cycle (i = 

1,2,..m) is partly constant and partly dependent on the 

lot size during that cycle and is of the following form: 

 

The relief items that arrive at time j will satisfy the 

demand until time k. Therefore, the i-th cycle starts 

at period ji and ends at period ki. 

The following notations have been used: 

Input parameter 

f(t) : Demand function. Here, a1,b1,a2,b2, μ1, 

and μ2 are given. 

µ1 : Start point of constant demand rate in 

trapezoidal demand trend 

µ2 : End point of constant demand rate in 

trapezoidal demand trend 

H : Planning horizon (day) 

h1 : Holding cost ($/unit-day) 

A0 : Fixed cost ($) 

C0 : Operational cost($/unit) 

   

Explanatory items 

ni : Cycles during increasing demand rate 

in trapezoidal demand trend in multi-

order strategy 

c1i : Cycle combination with increasing 

demand rate and constant demand rate 

in trapezoidal demand trend in multi-

order strategy 

Li : Cycles during constant demand rate in 

trapezoidal demand trend in multi-

order strategy 

c2i : Cycle combination with constant 

demand rate and declining demand rate 

in trapezoidal demand trend in multi-

order strategy  

di : Cycles during decreasing demand rate 

in trapezoidal demand trend in multi-

order strategy 

1s : Section during increasing demand rate 

in trapezoidal demand trend in one-

order strategy 

2s : Section during constant demand rate in 

trapezoidal demand trend in one-order 

strategy 

3s : Section during decreasing demand rate 

in trapezoidal demand trend in one-

order strategy 

Sm : Starting point of the replenishment 

cycle number m 

Em : End point of the replenishment cycle 

number m 

γ : Ratio of horizontal section and 

𝐺𝑖 = 𝐴0 + 𝐶0𝑞𝑖 (1) 
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planning horizon(
𝜇2

𝐻
) 

β : Ratio of holding cost and lot size 

dependent part of operational cost (
ℎ1

𝐶0
) 

   

Output variable 

Ii(t) : Inventory level at time t in cycle i 

Ri : Holding cost of cycle i 

Gi : Replenishment cost in cycle i. It has 

two components. One is fixed and 

another is dependent on lot size 

D0 : Constant demand rate of trapezoidal 

demand trend in between µ1 and µ2 

ji : Start time of cycle i 

ki : End time of cycle i 

qi : Order quantity in cycle i 

m :  Total number of cycle in a planning 

horizon 

W(j,k) : Total cycle cost 

TCk : Total cost at time k 

TCj : Total cost at time j 

TC0 : Total cost at the beginning of relief 

operations 

 

3. MODEL FOR DIFFERENT 

INVENTORY PATTERN 

At t = j𝑖, the relief items arrive at the secondary hub. 

The stock level in the secondary hub decreases owing 

to demand and becomes zero at time t = k𝑖, when 

the next batch arrives. The cycle length is not fixed 

and is dependent on lot size. The entire cycle repeats 

m times during (0,H). Our problem is to determine 

the optimal values of lot size of each cycle (𝑞𝑖) and 

replenishment time (ji), which minimizes the total 

cost over the time horizon. 

The demand rate f(t) at any instant is a linear function 

of t such that 

 

f(t) = {

𝑎1 + 𝑏1𝑡   𝑤ℎ𝑒𝑛  𝑡 ≤ 𝜇1

𝐷0 𝑤ℎ𝑒𝑛 𝜇1 ≤ 𝑡 ≤ 𝜇2

𝑎2 − 𝑏2𝑡 𝑤ℎ𝑒𝑛 𝜇2 ≤ 𝑡 ≤ 𝐻 ≤
𝑎2

𝑏2

 

( 2) 

 

 

Fig. 3 The trapezoid demand trend 

 
 

Fig. 4 Inventory trend (multi-

order strategy) 

Fig. 5 Inventory 

trend(single-order strategy) 

 

(1) Inventory model with multi-order strategy 

As the demand type has a trapezoidal trend in the 

planning horizon (Fig. 3), the inventory trend 

becomes complex, as shown in Fig. 4 for multi-order 

strategy and in Fig. 5 for single-order strategy. It 

shows that some cycles start and end before µ1. These 

cycles are named ni. Again, one cycle may start 

before µ1 and may end after µ1. This cycle is named 

c1i. If a cycle starts after µ1 and ends before µ2, it is 

named Li. Again, one cycle may start before µ2 and 

end after µ2. This cycle is named C2i. If a cycle starts 

and ends after µ2, it is known as di. 

Now, the change of inventor level  

d𝐼𝑖(𝑡)

dt
= −(𝑎1 + 𝑏1𝑡)    𝑓𝑜𝑟  𝑛𝑖  𝑎𝑛𝑑 𝑡 ≤ 𝜇1 

( 3) 

d𝐼𝑖(𝑡)

dt
= −(𝑎1 + 𝑏1𝑡)  𝑓𝑜𝑟 𝑐1𝑖  𝑎𝑛𝑑 𝑡 ≤ 𝜇1 

( 4) 

d𝐼𝑖(𝑡)

dt
= −𝐷0             𝑓𝑜𝑟 𝑐1𝑖  𝑎𝑛𝑑 𝑡 ≥ 𝜇1 

( 5) 

 

d𝐼𝑖(𝑡)

dt
= −𝐷0      𝑓𝑜𝑟 𝐿𝑖  𝑎𝑛𝑑  𝜇1 ≤  𝑡 ≤ 𝜇2 

( 6) 
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d𝐼𝑖(𝑡)

dt
= −𝐷0     𝑓𝑜𝑟 𝑐2𝑖  𝑎𝑛𝑑  𝜇1 ≤  𝑡 ≤ 𝜇2 

( 7) 

d𝐼𝑖(𝑡)

dt
= −(𝑎2 − 𝑏2𝑡) 𝑓𝑜𝑟 𝑐2𝑖  𝑎𝑛𝑑  𝜇2 ≤  𝑡 

 

( 8) 

 

d𝐼𝑖(𝑡)

dt
= −(𝑎2 − 𝑏2𝑡)   𝑓𝑜𝑟 𝑑𝑖  𝑎𝑛𝑑  𝜇2 ≤  𝑡 

( 9) 

Assume that the arrival of a relief item occurs at j and 

the inventory becomes zero at k. 

Solving the differential equations from ( 3) to ( 9),  

𝑓𝑜𝑟 𝑛𝑖 

𝑡 ≤ 𝜇1 

𝐼𝑖(𝑡) = ∫ (−𝑎1 − 𝑏1𝑡)𝑑𝑢
𝑘

𝑡

 
( 10) 

 

= 𝑎1(𝑘 − 𝑡) +
𝑏1

2
(𝑘2 − 𝑡2) ( 11) 

𝑓𝑜𝑟 𝑐1𝑖 

𝑡 ≤ 𝜇1 

𝐼𝑖(𝑡) = ∫ (−𝑎1 − 𝑏1𝑡)𝑑𝑢
𝜇1

𝑡

 ( 12) 

= 𝐷0𝑘 − 𝐷0𝜇1 + 𝑎1𝜇1 +
𝑏1

2
𝜇1

2

− 𝑎1𝑡 −
𝑏1

2
𝑡2 

( 13) 

𝑓𝑜𝑟 𝑐1𝑖 

𝑡 ≥ 𝜇1 

𝐼𝑖(𝑡) = − ∫ 𝐷0𝑑𝑢
𝑘

𝑡

 ( 14) 

= 𝐷0(𝑘 − 𝑡) ( 15) 

𝑓𝑜𝑟 𝐿𝑖 

𝜇1 ≤  𝑡

≤ 𝜇2 

𝐼𝑖(𝑡) = − ∫ 𝐷0𝑑𝑢
𝑘

𝑡

 ( 16) 

= 𝐷0(𝑘 − 𝑡) ( 17) 

𝑓𝑜𝑟 𝑐2𝑖 

𝜇1 ≤  𝑡

≤ 𝜇2 

 

𝐼𝑖(𝑡) = − ∫ 𝐷0𝑑𝑢
𝜇2

𝑡

 ( 18) 

= 𝑎2(k − 𝜇2) −
𝑏2

2
(𝑘2 − 𝜇2

2)

+ 𝐷0(𝜇2 − 𝑡) 

( 19) 

𝑓𝑜𝑟 𝑐2𝑖 

𝜇2 ≤  𝑡 

𝐼𝑖(𝑡) = − ∫ (𝑎2 − 𝑏2𝑡) 𝑑𝑡
𝑡

𝜇2

 ( 20) 

＝𝑎2(𝑘 − 𝑡) −
𝑏2

2
(𝑘2 − 𝑡2) ( 21) 

𝑓𝑜𝑟 𝑑𝑖 

𝜇2 ≤  𝑡 

𝐼𝑖(𝑡) = − ∫ (𝑎2 − 𝑏2𝑡) 𝑑𝑡
𝑘

𝑡

 ( 22) 

= 𝑎2(𝑘 − 𝑡) −
𝑏2

2
(𝑘2 − 𝑡2) ( 23) 

The holding cost is computed for each cycle in the 

following manner 

The holding cost for cycle type ni 

𝑅𝑖 = ℎ1 ∫ 𝑎1(𝑘 − 𝑡) +
𝑏1

2
(𝑘2 − 𝑡2)

𝑘

𝑗

𝑑𝑡 
( 24) 

= ℎ1 (𝑎1 (
𝑘2

2
+

𝑝2

2
− 𝑘𝑝) +

𝑏1

2
(𝑘2(𝑘 − 𝑝) −

𝑘3

3
+

𝑝3

3
))  

( 25) 

The holding cost for cycle type c1i   

𝑅𝑖 = ℎ1 ∫ (𝐷0𝑘 − 𝐷0𝜇1 + 𝑎1𝜇1 +
𝑏1

2
𝜇1

2 − 𝑎1(𝜇1 − 𝑡) −
𝜇1

𝑗

𝑏1

2
(𝜇1

2 − 𝑡2)) 𝑑𝑡 + ℎ1 ∫ 𝐷0(𝑡 − 𝑘)𝑑𝑡
𝑘

𝜇1
  

( 26) 

= ℎ1 (𝐷0𝑘(𝜇1 − 𝑗) − 𝐷0𝜇1(𝜇1 − 𝑗) + 𝑎1𝜇1(𝜇1 −

𝑗) +
𝑏1

2
𝜇1

2(𝜇1 − 𝑗) − 𝑎1 (
𝜇1

2−𝑗2

2
) −

𝑏1

2
(

𝜇1
3−𝑗3

3
) +

𝐷0 (
𝜇1

2

2
+

𝑘2

2
− 𝑘𝜇1))  

( 27) 

The holding cost for cycle type Li 

R𝑖 = ∫ 𝐷0(𝑘 − 𝑡)𝑑𝑡
𝑘

𝑗

 
( 28) 

= ℎ1𝐷0 (
𝑗2

2
+

𝑘2

2
− 𝑘𝑗) 

( 29) 

The holding cost for cycle type c2i 

R𝑖 = ∫ (𝑎2(k − 𝜇2) +
𝑏2

2
(𝑘2 − 𝜇2

2) − 𝐷0(𝜇2 −
𝜇2

𝑗

𝑡)) 𝑑𝑡 + ∫ (𝐷0(𝜇2 − 𝑗) + 𝑎2(𝑗 − 𝜇2) −
𝑏2

2
(𝑗2 −

𝑘

𝜇2

𝜇2
2) − 𝑎2(𝑡 − 𝜇2) +

𝑏2

2
(𝑡2 − 𝜇2

2) ) 𝑑𝑡  

( 30) 

= ℎ1 (𝑎2(k − 𝜇2)(𝜇2 − j) −
𝑏2

2
(𝑘2 − 𝜇2

2)(𝜇2 − j) +

𝐷0 (
𝜇2

2+𝑗2

2
− 𝜇2𝑗) + 𝑎2 (

𝜇2
2

2
−

𝑘𝜇2

2
) −

𝑏2

2
(

𝜇2
3

3
−

𝑘2𝜇2

3
))  

( 31) 

The holding cost for cycle type di 

𝑅𝑖 = ∫ (𝑎2(𝑘 − 𝑡) −
𝑏2

2
(𝑘2 − 𝑡2)) 𝑑𝑡

𝑘

𝑗

 
( 32) 

= ℎ1 (𝑎2 (
𝑘2+𝑗2

2
− 𝑘𝑗) −

𝑏2

2
(

2𝑘3+𝑗3

3
− 𝑘2𝑗))  

 

( 33) 
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(1) Model For Single-Order Strategy  

The inventory trend for one-order cycle strategy is 

shown Fig. 5. The inventory curve is divided into three 

sections named 1s, 2s and 3s on the basis of its gradient.  

Now, the change of inventor level  

𝑓𝑜𝑟  1𝑠 𝑎𝑛𝑑 𝑡 ≤ 𝜇1 d𝐼𝑖(𝑡)

dt
= −(𝑎1 + 𝑏1𝑡)  

( 34) 

2𝑠; 𝜇2 ≥ 𝑡 ≥ 𝜇1 d𝐼𝑖(𝑡)

dt
= −𝐷0              

( 35) 

𝑓𝑜𝑟 3𝑠 ;  𝜇2 ≤  𝑡 d𝐼𝑖(𝑡)

dt
= −(𝑎2 − 𝑏2𝑡)  

( 36) 

Assume that the relief items arrive at the beginning of 

the planning horizon and the inventory becomes zero at 

the end of the planning horizon (H) 

for cycle 

type 1s 

 

𝐼𝑖(𝑡) = ∫ (−𝑎1 − 𝑏1𝑡)𝑑𝑢
𝜇1

𝑡

 
( 37) 

= 𝑎2(H − μ2) − 
𝑏2

2
(𝐻2 − 𝜇2

2) + 𝐷0(𝜇2 −

𝜇1) + 𝑎1(𝜇1 − 𝑡) +
𝑏1

2
(𝜇1

2 − 𝑡2)  

 

( 38) 

for cycle 

type 2s 
𝐼𝑖(𝑡) = − ∫ 𝐷0𝑑𝑢

𝜇2

𝑡

 
( 39) 

= 𝑎2(H − μ2) −
𝑏2

2
(𝐻2 − 𝜇2

2) + 𝐷0𝜇2 − 𝐷0𝑡  ( 40) 

 

For cycle 

type 3s  

 

I(t) = ∫ (𝑎2 − 𝑏2𝑡
𝐻

𝑡

)𝑑𝑡 ( 41) 

= 𝑎2(H − t) −
𝑏2

2
(𝐻2 − 𝑡2) 

( 42) 

The holding cost in the cycle 

R𝑖 = ∫ (𝑎2(H − μ2) −
𝑏2

2
(𝐻2 − 𝜇2

2) + 𝐷0(𝜇2 −
𝜇1

0

𝜇1) + 𝑎1(𝜇1 − 𝑡) +
𝑏1

2
(𝜇1

2 − 𝑡2)) 𝑑𝑡 +

∫ (𝑎2(H − μ2) −
𝑏2

2
(𝐻2 − 𝜇2

2) + 𝐷0(𝜇2 −
𝜇2

𝜇1

𝑡) ) 𝑑𝑡 + ∫ (𝑎2(H − t) −
𝑏2

2
(𝐻2 − 𝑡2))𝑑𝑡

𝐻

𝜇2
  

( 43) 

= 𝑎2(H − μ2)μ1 −
𝑏2

2
(𝐻2 − 𝜇2

2)μ1 + 𝐷0(𝜇2 − ( 44) 

𝜇1)μ1 +
1

2
(𝑎1𝜇1

2) +
𝑏1𝜇1

3

3
+ 𝑎2(H − μ2)(μ2 −

μ1) −
𝑏2

2
(𝐻2 − 𝜇2

2)(μ2 − μ1) + 𝐷0 (𝜇2(μ2 −

μ1) −
1

2
(𝜇2

2 − 𝜇1
2)) + 𝑎2 (H(H − 𝜇2) −

1

2
(𝐻2 −

𝜇2
2)) −

𝑏2

2
(𝐻2(H − 𝜇2) −

1

3
(𝐻3 − 𝜇2

3))  

 

(2)Total Cycle Cost 

The total cycle cost consists of replenishment cost and 

holding cost. Therefore the total cycle cost is  

W(j, k) = 𝐴0 + 𝐶0𝑞𝑖 + ℎ1𝑅𝑖 ( 45) 

The cycle cost depends on the replenishment time and 

cycle length. Therefore, we differentiate eq. ( 45) with 

respect to j  

∂W(j, k)

∂j
= 0 

( 46) 

As obtaining a closed-form solution of eq ( 46) is 

difficult, the replenishment point j is estimated using a 

numerical search engine. A bisection algorithm is used 

to ascertain the location of j*.  

 

(3) Sequence of Replenishment  

The objective of the proposed model is to ascertain the 

optimal sequence of replenishment point j along the 

planning horizon H that minimizes total system costs. 

The optimal sequence of replenishment points may be 

determined by solving the following dynamic 

programming equations. 

𝑇𝐶𝑘 = 𝑀𝑖𝑛{𝑇𝐶𝑗 + 𝑊(𝑗, 𝑘)} ( 47) 

𝑇𝐶0 = 0 ( 48) 

Eq. ( 48) shows that the cost at the starting point is zero. 

The forward recursive procedure is used to ascertain the 

minimal total cost over planning horizon H. To solve the 

model, a dynamic programming algorithm is proposed 

and subsequently explained. The algorithm is a 

modified version of that of (Das and Okumura, 2016) 

Step 0: Input parameters: A0, C0, h1, f(t) 

Step 1: Let TC0=0, j=0 and m=1 
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For k=1 to H {  

Solve eq ( 46)to obtain W(j, k) 

Let 𝑇𝐶𝑘 = 𝑊(𝑗, 𝑘) , 𝑆𝑚 = 0, and 𝐸𝑚 = 𝑘 

} 

Step 2: Let i←1 

For k=2 to H { 

For j=i to k-1 { 

Solve eq ( 46) to obtain W(j, k) 

IF 𝑇𝐶𝑘 > 𝑇𝐶𝑗 + W(j, k){ 

  𝑇𝐶𝑘 = 𝑇𝐶𝑗 + W(j, k), 𝑚 = 𝑚 + 1,   𝑆𝑚 =

𝑗 and 𝐸𝑚 = 𝑘 

i=k+1 

For t= i to H { 

Solve eq ( 46) to obtain W(k, t) 

Let 𝑇𝐶𝑡 = 𝑇𝐶𝑘 + 𝑊(𝑘, 𝑡) 

} 

} 

} 

} 

Step 3: Let 𝑘 = 𝐻 

While (𝑚 ≠ 1) { 

   Replenishment cycle= [𝑆𝑚, 𝐸𝑚] 

Cumulated total cost =𝑇𝐶𝑘 

m ← m − 1. 

} 

 

4. NUMERICAL ILLUSTRATION 

The model developed in section 3 is applicable to the 

distribution of different long-term relief items. We 

present a numerical example to illustrate the solution 

concepts presented previously. Table 1 lists the key 

parameters.  

The values used in the numerical example are useful for 

illustration purposes, but they might not match the 

values estimated by the ultimate users of the model. A 

user should gather parameter values before using the 

model. Cost parameters are local condition values. We 

have done sensitivity of cost parameters. Historical 

relief operation data can be helpful for setting parameter 

values for the demand. In this analysis, we kept total 

demand value is constant and the value is one thousand 

two hundred unit (1200 unit). For keeping the analysis 

tractable, we set μ1 = 0  and here γis the ratio of 

horizontal section length and planning horizon. 

 

Fig.  6 : Trapezoid demand trend for numerical 

analysis 

 

γ =
𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ

𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛
 

(49) 

 

If γ = 0,becomes linear decreasing demand trend. If 

γ = 1, becomes uniformly distributed demand. The 

parameters of demand function is shown in Table 1 

Since the relief demand depends on disaster intensity, 

socio-economic status, population density, frail-

population density, and many other unknown factors. 

Therefore, the demand parameter can be set on the basis 

of available budget and target demand. Planning 

horizon (H) is assumed to be fixed and set to a value of 

50. 

 

Table 1: Demand parameters 

 a b D0 

Linear decreasing 

(γ=0) 

48 0.96 0 

Uniform 

distribution(γ=1) 

24 0 24 

Combination of 

uniform and linear 

decreasing (γ=0.5) 

64 1.28 32 
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Fig.  7 Inventory level and order cycle for linear 

decreasing trend demand type (γ=0) 

 

Fig.  8 Inventory and order cycle for uniform demand 

distribution  (γ=1) 

 

Fig.  9 Inventory level and order cycle for combination 

of uniform and linear decreasing demand trend (γ=0.5) 

 

Fig.  10 Inventory level and order cycle for combination 

of uniform and linear decreasing demand trend (γ=0.2) 

 

Eq ( 46) is solved by using the proposed algorithm in 

previous section. Fig.  7 - Fig.  10 illustrated relief 

ordering policy for different γ values. In the case of γ =

0, the order quantity decreases gradually. For γ = 1 the 

order quantity are kept constant. For other γ values the 

order quantity has decreasing and increasing trend. The 

increasing trend of order quantity ends before the 𝜇2 

and decreasing trends of order quantity starts after the 

𝜇2 . This finding provides valuable suggestion for a 

logistics manager to conduct transportation and 

warehousing contract. So the location of 𝜇2  (or γ 

value) is critical for lowering order quantity. The order 

quantity and replenishment time can be found from the 

respective figures. This analysis shows that the position 

of μ2  are important in warehouse and transport cost 

capacity selection. 

 

Fig.  11 Cost sensitivity with γ value 

 

Fig.  12 Total number of cycle sensitivity with β values 

We have conducted a sensitivity analysis for different γ 

values. It is observed that our system adjust the total 

number of cycles and order quantity for minimizing the 

total cost. Here total cost are stable (percent deviation 

less than 1% ) with the increment of γ. In our numerical 

setting, the total cost was minimum at the position of 

γ = 0.5 . As this system has tradeoff between the 

holding costs and replenishment costs, we did 

sensitivity analysis for different βvalues (Note that 

βrepresents is the ratio of holding cost and lot size 

dependent part of operational cost ). With the increment 

of β, the number of cycle also increases. For higher βthe 

holding cost also increases, therefore the system aims 

for lowering on-hand inventory and the average cycle 

lengths become shorter. 

 

5. CONCLUDING REMARK 

 In this paper, we have discussed the inventory problem 

for a trapezoid demand trend over a finite time horizon. 

The replenishment cost is taken to be dependent on the 

lot size of the current replenishment. A logistics 
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manager may bring all relief at the beginning of the 

relief operations. However, this strategy is not rational, 

as the stocked relief items could be used in other 

affected places. Therefore, the multi-order inventory 

policy is suitable for relief inventory management. The 

model outcomes show that the cycle lengths are not 

fixed and the order quantities are dependent on cycle 

length. 

After the 2011 great east Japan earthquake, several 

types of demand trends depending on product type are 

observed. Order quantity for a trapezoidal demand trend 

(with 𝜇1 = 0) showed increasing and decreasing trend. 

The kink point (𝜇2) is a critical point for identifying 

transition period of ordering quantity.  It proves that 

the selection of the type of demand distribution has 

significance influence on the system cost. Of course, the 

paper provides an interesting topic for the further study 

of such kind of important inventory models. 
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