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Abstract:  

This study aims to clarify the location characteristic of the optimal distribution centers 

obtained by the joint inventory / distribution problem. Simulation analysis under different 

sets of parameters concerning logistics and transportation characteristics would give 

different / indifferent geographic distributions of DC location and inventory. The 

calculated locations of DC are analyzed through the rank-size coefficient, which indicates 

that geographical distribution of DC location is more scattered than that expected by 

Zipf’s law. If a pressure from demand side for stock-out, fewer number of DCs with 

larger stocks opt to locate at lower land rent zones. Discount of expressway toll makes no 

particular influence on the rank-size coefficient.  

 
Keywords: Delivery logistics, Inventory, Location of distribution centers 

 

1. Introduction 
Drastic innovations in information technologies (IT) started in 1990’s haves pushed further 

innovations in manufacturing, transportation, and retail industries. Coincide with the shift from 
“product-out” to “market-in” principle in marketing science, Supply-Chain-Management (SCM) 
becomes a focal issue in logistics field instead of “Just-in-time” principle managing intermediate 
goods flow within the supply side (Hameri and Paatera, 2005). SCM requires an efficient integration 
among the above sectors in order to enable more value-added service. A famous business model based 
on SCM is e-commerce such as “Built to order” system from the end users by DELL Computer Inc. 
(Gunasekaran and Ngai, 2005). “Built to order” system gives novel channel between a firm and 
customers such that a customer requests to make ready-made personal computer “personalized” 
through the web site, the order immediately let factories start to assemble the requested parts, and then 
the “personal” computer built in the request is delivered in a few days. In this system, appropriate 
information sharing among the sectors is of importance. 
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After the appearing of e-commerce, penetration of IT among our economy has rapidly progressed. 
Lassere (2004) pointed out that growth of e-commerce stimulates more improvement in logistics 
service especially for delivery sector following to customer’s needs for convenient service. Therefore, 
we can find a positive feedback among demand and supply side under advanced IT, such that the more 
improvement in delivery service on average is done by supply side, the more requirements on 
convenient delivery occurs from demand side. Hesse and Rodorigue (2004) showed a figure about 
longitudinal change in logistics from 1960s to 2000s. Average cycle time required to produce a 
completed good from its materials is decreased about one eighth of 1960s in 2000s, while decrease in 
transportation and in inventory cost are moderate such as two third of 1960s in 2000s. They pointed 
out that average cycle time is effectively decreased by enforcing efficient management in supply side, 
while some of cost in transportation and inventory can not be decreased in order to keep demand side 
service higher. 

A trade-off in terms of cost between goods distribution and inventory management, that is, less 
inventory at distribution center (DC) is incompatible with quick distribution by placing DC close to 
customers with large inventory, is important focal issue to understand logistic network design. The 
joint inventory / distribution problem has been intensively studied in applied operations research 
(ReVelle and Laporte, 1998). Jayaraman and Pirkul (2001) formulated multi-plant, multi-product 
distribution model with multiple-echelon to simultaneously determine the location of plant and DCs, 
with the quantity of raw, intermediate and final goods flows among plant, DCs and customers. A joint 
inventory / distribution problem is further expanded into a joint inventory / routing (around customers) 
problem to find optimal routing around customers (Agezzaf, E. et al,, 2006).  

Most of these previous studies in operations research contribute to obtain an optimal solution 
efficiently, however, researchers merely have deductive viewpoint on geographical characteristics of 
the sets of optimal DC location and inventory. Okumura and Tsukai (2003) applied joint inventory / 
delivery model with a given parameter set to various whole Japan transport networks, and then found 
the robustness of distribution center locations by intuitive inspections, but such naive inspections have 
a limitation to generalize the obtained characteristics over the different conditions. Therefore in this 
study, the change of the rank-size distribution of DC characteristics such as operated demand, and 
prepared stocks will be tested by the rank-size coefficient obtained under various sets of parameters.  

Studies on rank-size distribution has been attracted strong interests of geographers. Auerbach (1919) 
found that city size distribution could be closely approximated by Pareto distribution. Here, rank of 
cities is numbered from largest (rank 1) to smallest (rank N ) to get the rank p  for city size of ( )S p . 

Then eq.(1) would describe the relationship between p  and )( pS . 
log ( ) log logS p A p       (1) 

where A  and  (rank-size coefficient) are parameters. Zipf (1949) reported that city size follow a 
special form of the distribution where 1  , which is called Zipf’s law. Soo (2005) reported 

cross-country difference on Zipf’s law by empirically estimating the rank-size coefficient. Nitsch 
(2005) summarized conventional studies by meta-analysis on 29 studies on 515 rank-size coefficients, 
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giving that supportive result for Zipf’s law.  
In this study, we aim to clarify location characteristics of distribution centers obtained as the optimal 

location by the joint inventory / distribution problem. Simulation analysis under different sets of 
parameters reflecting customers and geographic characteristics would give different / indifferent 
geographic characteristics of DC location and inventory. The location characteristics of these 
simulation results are analyzed through the rank-size coefficients estimated from the located DC 
characteristics, in terms of operated demand and prepared stock size. This approach will give more 
proper understanding about the change in geographic advantages against supply and demand side 
structural change. 

The sections are organized as follows. Sec.2 explains two echelon inventory system as joint 
inventory / distribution problem, and shows how it is formulated as an optimization problem. Sec.3 is 
for calculation procedure for two echelon inventory system, and for the estimation of rank-size 
coefficient. Sec.4 demonstrates the proposed model applied for truck sales system in Japan. Sec.5 
summarizes the outputs and further issues to be studied. 
 

2. Two echelon inventory system 
2.1 Replenish interval and inventory 

In this study, we adopt joint inventory / distribution model considering stochastic demand proposed 
by Nozick and Turnquist (2001). The proposed model has a two-echelon distribution network 
formation problem and endogenized optimal inventory allocation between a central logistic center 
(called as “plant” ) and several number of “distribution center (DC)s” under stochastic demand, as 
illustrated in Fig. 1. Since the basic configuration of the model follows our previous study, we briefly  
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Figure 1 Two-echelon goods distribution network 
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shows the model used in this study, see details in Okumura and Tsukai (2003). 
Although many manufacturing firms begin to manage total supply chains including parts and 

material supply process, in reality, their final assembly plants can not be easily relocated. Moreover, 
many firms try to make the market chain simpler and reduce the number of echelons. Therefore, we 
concentrate our analysis on market chain from a plant to customers, so then the location of plant (i.e. 
transportation cost between plant and DCs ) is not considered. The proposed two echelon system is 
composed by one “plant” (indicated by 0j  ), and many DCs (indicated by 1, ,j N  ) providing 
the distribution service to the retail outlets (indicated by 1, ,i I  ) locating all over the country, 
replying to the orders. From final manufacturing factories, finished products are sent to the “plant”, 
once in a predetermined interval 0  to make the plant storage full ( 0s ). From the plant, several 
numbers of products are sent in a given interval 1 , in order to replenish of DC stock ( js ). Each DC 
(indicated by j ) has a full stock of js  just after the replenishment, and sends one product when it 
receives an order from a retail outlets under its supervision area ( i  for 1ijY ). Orders from each 
retail outlet are assumed to follow mutually independent Poisson distribution with given arrival rate 
( i ). If ijY  be the proportion of demands at retail outlet i  supplied by DC j , the aggregated order 
arrival at DC j  is also given by a Poisson distribution, whose arrival rate j is given by 

1

I

j ij i
i

Y 


         (2) 

If the number of orders in the given replenishment interval ( 1 ) exceeds the storage size ( js ), 
stock-out occurs and makes the customer wait until the next replenishment. Possibly some customers 
prefer canceling to waiting, then make the firm loss of profit. Such loss is evaluated as parameter  . 

The probability of DC stock-out ( )jr s  is given by the following, when jm  is number of orders at 
DC j during the replenishment interval 1 . 

  1 1

1

exp( )( )
( ) Prob

j

j j

m
j j

j j j
jm s

r s m s
m
 

 

 
    .    (3) 

The total demand at the plant is also a Poisson process with mean arrival rate. 

0
1 1

N I

j i
j i


 

            (4) 

The stock-out probability 0( )r s at the plant with capacity 0s  under the replenishment interval 0  
is given by the similar equation with eq.(3), such as 

 
0

0 0

0 0 0 0
0 0 0

01

exp( )( )
( ) Prob

m

m s
r s m s

m
 

 

 
       (5) 

where 0m  is number of orders at the plant during the replenishment interval 0 . There is no direct 
effect of plant stock-out on customers, as long as stock remains at the DCs. However, once stock-out is 
happened at the plant and backorders accumulate at the plant, the succeeding replenishment to DCs 
must be postponed. The average additional waiting time at the DCs is given by the expected number of 
backorders at the plant, divided by the plant demand rate, 0 , according to the Little’s Law. 
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Figure 2 Dynamics of the stock at distribution center during replenishment interval 
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The replenishment interval from the plant to the DCs 1  in eq.(3) is replaced by the expected 
replenishment time as, 

1 1 0W            (7) 

This replenishment postponing violates the assumption of independency between the demand and 
replenishment processes, but the differences are considered to be minor (Diks et al., 1996). 

In case of simultaneous stock-outs at the plant and at some DC, the customer must wait longer, and 
the expected profit loss becomes larger than the case of stock-out in DC only. The expected loss is 
indicated by a given parameter  , which is naturally larger than  for stock-out at DC only.  

In order to avoid such stock-out losses, larger number of products than the average demand must be 
stored at DCs and at the plant. In logistic theory, the stock for average demands during the  
replenishment time is called as “cycle stock,” while additional stock over that cycle stock is called as 
“safety stock.” In this model, we assume that safety stock is non-negative, then, 

0 0 0 1, j js s            (8) 
Fig. 2 illustrates the typical dynamics of the stock at one DC during replenishment interval. When 

excess demand during the interval becomes larger than the safety stock, DC stock-out occurs. Without 
safety stock, the cycle stock can cover the fluctuating demand with just 50 % of probability. As more 
safety stock is prepared, stock-out probability becomes smaller. In order to prepare the stock at the 
plant or at each DC site, corresponding cost is required. 

Assume that for each site, total inventory cost jC  can be given as linear function of stock size js , 
with certain fixed cost jf . Let jh be unit cost for storage capacity, then, 

( )j j j j jC s f h s          (9) 

Contrast to the original formulation, we permit the heterogeneity of unit cost jh , as well as the fixed 
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cost jf  according to the location of DC. In our analysis, those costs are given reflecting the land 
price of each location. 

Similarly, at the plant, storage cost 0C  is given by the following linear function of storage size 0s ; 

0 0 0 0 0( )C s f h s          (10) 
 

2.2 Optimal stock allocation model 
In order to know the most efficient level of safety stocks at the plant and the DCs, the following cost, 

which consists of expected stock-out penalty and inventory costs, must be minimized, with non- 
negative safety stock conditions eq.(8). 

0
0 0 0 0 0 0, 1 1 1

min 1 ( ) ( ) ( ) ( )
j

N N N

j j j j j j j js s j j j
r s r s r s r s h s h s 

  

            (11) 

0 0 0 1, j js s            (8) 

 
2.3 Optimal DC location selection 

To search the efficient number of the DCs; N  and location of each DC, we can utilize optimal 
facility location problem minimizing the total cost composed by the location cost and transportation 
cost, as formulated in the field of operations research. We take the following assumptions in order to 
simplify the location problem. 

 
1) Consider a firm whose customers are locating all over the country. 
2) Products are conveyed one way from the plant to DCs, and from each DC to retail outlets 

locations supervised by the DC by trucks. 
3) Transportation cost between the plant and DCs is negligible, because that transportation in large 

lot size require relatively small unit cost comparing to the more frequent lower transportations in 
smaller lot size from DC to the retail outlets. 

4) The fixed location cost jf  and unit storage cost jh  are given in proportional with land price of 
the location j . 

5) The location of the plant is exogenously given. 
 
Optimal facility location problem to give the number of DCs and the locations can be formulated as 

follows, when k  be the candidate location set for DCs. 

, 1 1 1
min

k ik

K K I
p

k k i ik ikIPX Y k k i
Z C X g d Y

  

       (12) 

 subject to 0,1kX k K        (13) 

1
1

N

ik
k

Y i I


       (14) 

,ik kY X k K i I        (15) 

where, kX  is integer variable indicating the existence of DC at location k K , ikY  is the 
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proportion of demand in i  supervised by DC k , kC  is location cost of DC at location k , g  is 
unit time period, and ikd  is unit transportation cost between location k to i . Constraint (14) is a 
condition for DCs to cover all i I . Constraint (15) is a consistency between kX  and ikY , if 
customer in i  can not be assigned to k  without DC (eliminating 1ikY   when 0kX  ). 

Because ikY  is also binary due to the consistency condition of (15) and binary definition (13) of 

kX , this problem is integer programming problem (IP). 
 

3. Calculation procedure for the models 
3. 1 Integrated model and optimization procedure 

Combining the two minimization problems (11) and (12), we can get optimal number of DCs, 
location and stock size at each DCs, as well as stock size at the plant. 

At first, exogenous parameters, 1 0 0 0, , , , , , , ,i j jf h f h     and ikd are given. Solution of the second 
location problem minimizing eq.(12), ikY  gives the demand arrival rate of each DC j  through 

eq.(2) as the input for the first stock assignment problem minimizing eq.(11). 
The first model is a non-linear problem whose solution space has dimension of 1N   over control 

variables 0s  and js s . However, there are no interactions between the stock capacities of the different 
DCs in eq.(11), the optimization problem is separable and monotonic for each js . The following 
procedure can be used considering that 0s  and js s  are integer variables satisfying eq.(8). 

 

1) Set 0s  be the smallest integer value no less than the cycle stock at the plant, 0 0  . 
2) For each DC j , set js  be the smallest integer value exceeding 1 j  , calculate the value of the 

objective function eq.(11). 
3) Increase js  one by one until the total cost begins to increase. Keep *

js  as the candidate for the 
optimal solution. 

4) After all DC stocks are determined, the value of optimal function for 0s and *
js  is calculated 

and kept for candidate solution. 
5) Unless the function value increase, add one to 0s  and iterate the steps from step 2), above. 
 
Using the solution of the first problem, js , we refresh the location cost for each DC through eq.(9), 

which is required for the location problem. However, eq.(9) give the location cost only for the sites 
where DC locates in the present situation. 

The original study of Nozick and Turnquist (2001), proposed two alternate ways to give the stock 
capacity where DC is not locating at present. One way is to determine a critical stock-out level and 
know the total stock required in total system (plant and all DCs). If we divide that value by N  after 
subtraction of 0s , required stock level is estimated. The other way is to give the average stock of the 

present DCs for all potential locations. In their work, they neglect any differences in unit stock cost 

jh  by location, those two ways give the similar results. But if we introduce the heterogeneous stock 
cost jh  in each location, both of their approximations of stock level give a trouble in conversion of 
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iterative process. We take therefore, a different way to give the stock for potential DC locations, which 
is compatible when optimal solution is met. The way is to assume that if a potential location is selected, 
then such new DC takes over the function of the DC now responsible for that location, instead. Then, 
the same amount of stock must be prepared. This assumption is formulated as following, 

* , such that 1k i kjs s Y        (16) 

Then, we can set the location cost in the location problem is given as, 
if DC locates at
unless DC locates at k

k k k
k

k k j

f h s k
C

f h s
  

   (17) 

With this procedure, all parameters of the optimal location problem (12) are fixed and can be solved 
by an appropriate algorithm for non-capacitated facility location problem. 

If binary condition (13) is relieved to positive real, we get a linear programming (LP) and simplex 
method is applicable to get the optimal solution p

LPZ  (Campbell, 1990). Due to a strength of 
constraint for solution space, p

IPZ  is not less than p
LPZ and equal sign only appears when optimal LP 

solution is integer. However, simplex method needs a long calculation time for the problem with many 
constraints. Our model includes N  (number of DC candidates) I  (number of demand locations) 

constraints, but the constraints matrix is very sparse. Such problem can not be effectively solved even 
by modern LP or interior point method. Another popular algorithm for IP is branch and bound method, 
which is an enumeration method using lower bound information of objective function. This procedure 
makes sub-problems by setting restrictions on some locating candidates k  (i.e. 1kX  or 0kX   for 

some k ), which is called as “branch,” and estimate the lower bound of the branch k. If the lower 

bound of the branch k is inferior to another branch that is already estimated, we can terminate the 
branch k and move to further branch, which is called as “bound.” Therefore, the efficiency of the 
branch and bound critically depends on the accuracy of lower bound and calculation time for 
sub-problems. Erlenkotter (1976) proposed a dual ascent / dual adjustment procedure to optimize the 
dual problem shown in objective function p

IPZ ; (12) and constraints; from (13) to (15), which searches 

the optimal solution within the integer space. We use this procedure because this algorithm for the 
sub-problem is satisfactory with accuracy and quickness. 

 

3.2 Estimation of rank-size coefficient 
If optimal DC location is obtained by applying the procedure shown in 3.1, rank-size coefficients   

with constant term log A  in eq.(1) for DC arrival demand rates j , for DC stock size js  are 

estimated by OLS. Note that previous studies claim the bias in OLS estimates for rank-size coefficient, 
because the error term does not follow normal distribution. Nishiyama, et al. (2006) reported that OLS 

estimates of  ; ÔLS have downward bias, and it is also hold for OLS estimates of  ;  ÔLS
 , 

respectively. Therefore, a null hypothesis 0 : 1H     tends to be rejected. In order to avoid this bias, 

for example, maximum likelihood estimator with assuming Pareto distribution to error term (Hill, 
1975) is used in empirical study (Soo, 2005). However, our purpose of this study lies to make 
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comparison under several parameter settings, and the rank-size coefficients are used for a statistics to 
summarize geographical feature of DC location and inventory. The statistical test between the 
estimated parameter is not made, which leaves as a further research issue.  

 

4. Results in rank-size coefficient for the characteristics of distribution center 
4.1 Case Setting 

We consider the distribution from one domestic plant to the 207 regions all over Japan, through 
highway network in year 2000. Demand arrival rate in each region is given by allocating the annual 
domestic truck sales in year 1995 (177,264 vehicles / year) into each region with proportion to the 
number of the registered trucks there.  

Inter-regional transportation cost ijd  is given by the generalized cost including the expressway fare 

for truck and time value (3,000 yen / hr) of driving time between the regions through the shortest time 
path based on expressway, national and local primary road network. Since the target network is inter 
regional, we can neglect the congestion (transportation time is flow independent). We calculate it by 
using GIS function for the network in year 2000. 

DCs are considered to be locatable at any of 207 regions. Both fixed location cost jf  and unit 
stock cost jh  are set reflecting the land price level in each location. We assume that each DC requires 

fixed area for office (100 2m ) plus unit parking space (30 2m ) times the stock capacity, ks . Assume 

the business length of each DC be ten years. We consider the firm purchase the land for DC and that 
cost must be returned by flat payment for the years, with 4% of interest rate. Therefore, the annual 
payment is given as 12.3% of the land price. Land price data for each region is given as average price 
of residential and industrial used spots in the region, reported by the Ministry of Land, Infrastructure 
and Transportation. DC location cost is given by the required annual payment for the required space 
discussed above plus fixed cost of setup and maintenance of a DC (5 million yen, annually). As stated 
before, we consider transportation cost only between DC and retail regions, and ignore that between 
the plant and DCs. Due to this assumption, we can neglect the effect of plant location. The unit stock 
cost at the plant 0h  is required to solve the stock allocation problem between plant and DC so that it 
is set as the average value of kh s over the 207 regions. (Fixed location cost).  

Annual land rent per unit area of plant 0f  has no effect for the optimality of the problem, then we 
ignore it. The other parameters are set as follows; replenishment interval at plant 0 6   (days) and 
that in DCs 1 6   (days), respectively, stock-out penalties are 600   (yen) and 1200   (yen). 

The case with the parameter values described above gives a benchmark case, referred as 0B . 

Other simulation cases are set with variations of demand and supply side parameters. First, cases for 
different stock-out penalty are set to clarify the influence of demand side needs on DC location and 
their inventories by holding the ratio of the two stock-out penalty constant, and the other parameters 
are identical with 0B . The cases with higher stock-out penalty than 0B  are indicated by H + 
numbers, for example, 1H , and the cases with lower stock-out penalty than 0B  are indicated by L + 

numbers, for example, 1L , respectively. Totally 16 cases for different stock-out penalties are prepared. 
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Figure 3 Demand rates and ranks in case 0B  Figure 4 Stock sizes and ranks in case 0B  
 

Secondly, cases for different replenishment intervals are set to clarify the influence of production and 
logistic system on DC inventory and location. The cases for shorter replenishment interval are denoted 
by IS + numbers, while the cases for shorter replenishment interval are denoted by IL + numbers. In 
this simulation, only the replenishment interval parameter is changed, the other parameters are 
identical with 0B . As a result, totally 9 cases reflecting different supply side conditions are set. 

Thirdly, cases for expressway toll discount are set to clarify the influence of control variable of the 
government on DC inventory and location, indicated by D + numbers. In this simulation, only the 
expressway toll included in inter-regional transportation cost parameter is changed, the other 
parameters are identical with 0B . Totally 5 different cases are set.  The optimization procedure 

between stock allocation model and facility location model referred in 3.1 is converged about 3 or 4 
iterations for all cases; i.e. DC locations are not updated anymore among these models.  

Now, we first show the result of the benchmark case 0B . The logarithm of demand rate at each DC 

with logarithm of its rank is plotted on Fig. 3. The rank-size coefficient for demand rate D̂  estimated 
by using whole data is -0.716. However, the rank-size distribution of demand rate has concave shape 

as Fig.3, the intersection is over-estimated, and D̂  is under-estimated due to the steeper slope around 
the tail end (lower demand rate areas). Such phenomenon is often reported in the previous studies. In 
order to avoid this tail end effect on the coefficient estimates, the 10% of tail end data (low ranked 
data) will be excluded in rank-size coefficient calculation, as following a previous approach (Nitsch, 

2005). The rank-size coefficient D̂
  estimated by the data except 10% of tail end samples is -0.565 to 

indicate much gradual slope than D̂ , so then the influence of tail end data is well alleviated. The 
logarithm of stock size at each DC with logarithm of its rank is plotted on Fig. 4. Stock size 
distribution shows rather linear line except tail end. The rank-size coefficient for stock size is -0.505 
so that the spatial distribution of stock sizes is more scattered than that of demand rate. It is also more 

scattered than it expected by Zipf ‘s law ( 1 ).  
 

4.2 Simulation for different stock-out penalty cases 
Tab.1 shows the result of simulated cases with various stock-out penalty. On tab.1, the lowest 

stock-out penalty case is shown at the second row, then the cases with much higher stock-out penalty 
are arranged toward the bottom. The location cost shown in tab.1 indicates the summation of if s but   
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Table 1 Optimum DC locations and inventories; for stock-out penalty cases 

case No. of
DC

Total
cost

Penalty
cost

Transp.
cost

Location
cost

Safty
stock

Ave.
s-o.prob.

L6 6 12 59 77936 413 33373 44149 0 45.72%
L5 12 24 59 77949 427 33373 44149 48 44.36%
L4 30 60 59 77973 451 33373 44149 297 31.33%
L3 60 120 59 79292 459 33398 45436 645 15.35%
L2 120 240 56 82705 435 37448 44822 951 4.80%
L1 300 600 54 85155 427 38780 45948 1208 1.56%
B0 600 1200 54 86925 425 39005 47495 1525 0.71%
H1 1200 2400 54 86923 423 39005 47495 1755 0.34%
H2 3000 6000 57 89915 421 37165 52329 1803 0.12%
H3 6000 12000 57 89914 419 37165 52329 1888 0.06%
H4 12000 24000 57 90827 419 37071 53337 2001 0.03%
H5 30000 60000 54 91147 416 39351 51380 2106 0.01%
H6 60000 120000 55 92599 417 38821 53361 2246 0.00%
H7 120000 240000 55 92599 416 38821 53361 2352 0.00%
H8 300000 600000 55 94143 419 39051 54674 2470 0.00%
H9 600000 1200000 55 94147 423 39051 54674 2570 0.00%
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Figure 5 Average land rent and safety stock; for stock-out penalty cases 

 
not include i ih s  in eq.(17) , for easy understanding the difference of  land price. Note that for all 
these cases, stock at the plant 0s  is almost equal to average demand 0 0   as the lowest amount 

constrained by eq.(8). 
For example in 0B case, 54 of DCs with totally 1,525 stocks locates and its average stock-out 

probability (shown at the right-end column) is 0.71%. Number of DCs does not monotonically 
increase as stock-out penalty parameter increases. Total cost is obtained by summing up with penalty, 
transportation, and location cost. It increases with almost monotonically, but it is almost constant from 

6L  to 4L , 0B  and 1H , 2H  and 3H , 6H  and 7H , and 8H  and 9H . The share of penalty 

cost is very low in all the cases, while share of location cost is increased corresponding to the increase 
in stock-out penalty parameters. Safety stock is monotonically increased in order to avoid high  
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Table 2 Rank-size coefficient and intersection; for stock-out penalty cases 

case No. of
DC

Maximum
demand

Maximum
stock

L6 59 4.192 -0.562 4.064 2.725 -0.565 2.588
L5 59 4.192 -0.562 4.064 2.727 -0.565 2.588
L4 59 4.192 -0.562 4.064 2.728 -0.550 2.588
L3 59 4.225 -0.592 4.064 2.763 -0.561 2.604
L2 56 4.242 -0.597 4.064 2.792 -0.559 2.617
L1 54 4.240 -0.590 4.064 2.784 -0.531 2.628
B0 54 4.214 -0.565 3.992 2.767 -0.505 2.590
H1 54 4.214 -0.565 3.992 2.771 -0.501 2.595
H2 57 4.222 -0.583 3.992 2.791 -0.519 2.601
H3 57 4.222 -0.583 3.992 2.793 -0.515 2.605
H4 57 4.260 -0.618 4.064 2.827 -0.540 2.656
H5 54 4.243 -0.594 4.064 2.806 -0.506 2.661
H6 55 4.245 -0.600 4.064 2.810 -0.507 2.665
H7 55 4.245 -0.600 4.064 2.812 -0.504 2.668
H8 55 4.663 -0.647 4.064 2.815 -0.501 2.673
H9 55 4.412 -0.607 4.064 2.815 -0.501 2.673
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Figure 6 Demand rates and ranks in case 6L  Figure 7 Stock sizes and ranks in case 6L  
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Figure 8 Demand rates and ranks in case 9H     Figure 9 Stock sizes and ranks in case 9H  

 
average stock-out probability, as the increase in stock-out penalty parameter. Fig.5 shows the average 
land rent (weighted by stock at each DC) and safety stock. As the stock-out penalty parameter 
increases, average land rent decreases except at 4H , therefore, DC location tends to change from 
higher land rent region to lower land rent region, to realize the sufficient safety stock with moderate 
location cost. While the slope of safety stock can be approximated by two sections separated at 1H , 
the slope of average land rent would be approximated by two (or three) sections separated between 

3L  to 2L  (and between 4H  to 5H ). The difference in separation points between the location and  
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Table 3 Optimum DC locations and inventories; for replenishment interval cases 

case Replenishment
Interval (day)

No. of
DC

Total
cost

Penalty
cost

Transp.
cost

Location
cost

Safety
stock

Ave.
s-o.prob.

IS4 2 62 72617.67 162.93 30443.76 42011.00 523 6.90%
IS3 3 59 77749.57 226.95 33373.42 44149.24 795 2.88%
IS2 4 58 80878.27 293.90 34455.66 46128.74 1027 1.62%
IS1 5 57 83676.75 357.04 36669.72 46650.01 1220 0.99%
B0 6 54 86924.76 424.58 39004.74 47495.46 1525 0.71%
IL1 7 55 88491.67 491.09 38490.55 49510.08 1555 0.55%
IL2 8 57 90966.70 558.67 37070.76 53337.29 1727 0.45%
IL3 9 55 92806.27 624.00 38820.81 53361.48 1872 0.34%
IL4 10 55 94415.36 690.72 39050.96 54673.69 2018 0.28%  

9000

9500

10000

10500

11000

11500

12000

IS4 IS3 IS2 IS1 B0 IL1 IL2 IL3 IL4
0

500

1000

1500

2000

2500

Average land rent (yen) Safety stock

9000

9500

10000

10500

11000

11500

12000

IS4 IS3 IS2 IS1 B0 IL1 IL2 IL3 IL4
0

500

1000

1500

2000

2500

Average land rent (yen) Safety stock

 
Figure 10 Average land rent and safety stock; for replenishment interval cases 

 
safety stock graphs indicates that drastic change in DC location can be occurred if stock-out penalty 
from customers increases, even though the required safety stock almost linearly increases from 5L  

and 1H .  

Tab.2 shows the estimates of rank-size coefficient   and its intersection loga A  for the same 
cases. These coefficients are estimated from the data excluding 10% tail-end samples. Rank-size 
coefficients of demand rate and stock are around -0.5 to -0.6, therefore the distribution of these 
amounts is more scattered than the Zipf’s law. The rank-size coefficient of demand rate 

D̂  becomes 
slightly smaller, while that of stock 

S̂  becomes larger as the increase of stock-out penalty parameter. 
The shape of plots are shown in fig. 6, 8, and 3 show a plot of logarithm of demand rate and logarithm 
of its rank in 6L , 9H  and  0B ,respectively. Fig. 7, 9, and 4 show a plot of logarithm of stock and 
logarithm of its rank in 6L , , 9H  and 0B , respectively. In fig. 6, 8, and 3, shoulder of the 
distribution in DC demand rate is clearly seen. Note that the estimates for intersection for both 

D̂  
and 

S̂  are larger than that of maximum value of ( )S p , which means all the plots have concave 
shape. As stock-out penalty parameter is set larger, DCs for low demand are increased in number it 
order to decrease stock-out probability for such areas. In terms of stock distribution, DC with 
relatively small stock around tail end gathers more stock in fig.9 than in fig.7, because marginal effect 
to decrease stock-out probability is proportional to the current stock per demand, additional stock to  
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Table 4 Rank-size coefficients and intersections; for replenishment interval cases 

case No. of
DC

Maximum
demand

Maximum
stock

IS4 62 4.158 -0.542 4.063 2.238 -0.478 2.158
IS3 59 4.203 -0.573 4.064 2.453 -0.502 2.336
IS2 58 4.198 -0.566 4.064 2.573 -0.496 2.462
IS1 57 4.256 -0.616 4.064 2.723 -0.544 2.558
B0 54 4.214 -0.565 3.992 2.767 -0.505 2.590
IL1 55 4.218 -0.573 3.992 2.837 -0.514 2.654
IL2 57 4.273 -0.632 4.064 2.939 -0.564 2.757
IL3 55 4.245 -0.600 4.064 2.966 -0.539 2.808
IL4 55 4.244 -0.600 4.064 3.009 -0.539 2.851
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Figure 11 Demand rates and ranks in case 4IS     Figure 12 Stock sizes and ranks in case 4IS  
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Figure 13 Demand rates and ranks in case 4IL     Figure 14 Stock sizes and ranks in case 4IL  
 
low demand DC can more effectively decrease the total stock-out penalty rather than that to high 
demand DC. 
 

4.3 Simulation for different replenishment interval cases 
Tab.3 shows the result of simulated cases for different replenishment intervals. On tab.3, the shortest 

replenishment interval case is shown at the second row, then the cases with longer replenishment 
interval are arranged toward the bottom. Number of DC is decreased from 4IS  to 0B , but it does 

not monotonically change further from 1IL  to 4IL , as increase in replenishment interval parameters. 
Penalty, transportation and location costs are monotonically increase as the increase of replenishment 
interval parameters. Fig. 10 shows the average land rent (weighted by stock at each DC) and total 
safety stock. Average land rent is considerably decreased between 2IS  and 1IS , while safety stock 

seems to lineally increase corresponding as replenishment interval parameters increase.  
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Table 5 Optimum DC locations and inventories; for expressway toll discount cases 

case Discount
rate

No. of
DC

Total
cost

Penalty
cost

Transp.
cost

Location
cost

Safety
stock

Ave.
s-o.prob.

B0 - 54 86925 425 39005 47495 1525 0.71%
D1 -10% 54 85703 425 37783 47495 1525 0.71%
D2 -20% 57 85124 425 35098 49601 1405 0.73%
D3 -30% 53 82601 424 35918 46259 1366 0.70%
D4 -40% 52 81022 423 35668 44931 1345 0.69%
D5 -50% 50 80541 422 36730 43389 1336 0.66%  
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Figure 15 Average land rent and safety stock; for expressway toll discount cases 

 
Since large stocks are required under longer replenishment interval, lower land rent regions become 
more attractive for DC location.  

Tab.4 shows the estimates of rank-size coefficients ̂  and its intersections ̂ . Rank-size 
coefficient of demand rate 

D̂  is around -0.54 to -0.6, slightly becomes smaller, but not 
monotonically as replenishment interval parameters increase. Similar propensity is seen for the  
intersection of demand rate 

D̂ . Fig.11 and fig.13 show plots of the demand rate to its rank. 
Comparing fig.13 and fig.11, demand rate at higher rank DCs is larger in 4IL  than 4IS , while that at 
lower demand rate DCs is larger in 4IS  than 4IL . Therefore demand rate becomes more scattered 
under shorter replenishment interval setting; i.e. quicker production and logistic system. Rank-size 
coefficient of stock size 

S̂  is around -0.48 to -0.54, which is lower than that of demand rate. Fig.12 
and fig.14 show plots of the stock size to its rank. Except upward shift of the stock size distribution 
from 4IS  to 4IL , similar characteristic with the distribution of demand rate can be seen. 
 
4.4 Simulation for different expressway toll discount cases 

Tab.5 shows the result of simulated cases for different expressway toll discounting. The second row 
shows the case 0B  with no discount, and the other cases from 1D  to 5D  are followed in order with 

discount rate ascending toward the bottom. In case 1D , only the transportation cost is 10 % decreased 
comparing to 0B , the same DC locations and stocks are obtained. Number of DCs is decreased as 
increase of discount rate, except case 2D . From case 3D  to 5D , location cost is decreased because  
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Table 6 Rank-size coefficients and intersections; for expressway toll discount cases 

case No. of
DC

Maximum
demand

Maximum
stock

B0 54 4.214 -0.565 3.992 2.767 -0.505 2.590
D1 54 4.214 -0.565 3.992 2.767 -0.505 2.590
D2 57 4.232 -0.593 3.992 2.782 -0.529 2.590
D3 53 4.230 -0.578 4.064 2.780 -0.515 2.634
D4 52 4.251 -0.595 4.064 2.800 -0.531 2.634
D5 50 4.260 -0.595 4.003 2.816 -0.538 2.588
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Figure 16 Demand rates and ranks in case 5D     Figure 17 Stock sizes and ranks in case 5D  
 

a distribution network with fewer DCs and long transportation becomes more efficient due to the 
discount of expressway toll. Stock-out penalty cost and average stock-out probability are almost 
constant through all the cases in tab.3. Fig.15 shows the average land rent weighted by stock at each 
DC and safety stock. Average land rent significantly decrease in case 5D  along with the decrease of 
safety stock without increase in stock-out penalty. In our inventory model with stochastic demand, 
fewer number of DCs with larger inventory is advantageous to alleviate the influence of stochastic 
demand variation on stock-out penalty cost. Since variance of demand is proportional to squared root 
of average demand due to the property of Poisson distribution, so then the number of DCs and total 
safety stock can simultaneously be decreased with constant stock-out probability. Tab.6 shows 
estimates of rank-size coefficients ̂  and intersections ̂ . Rank-size coefficient of demand rate 

D̂  
is around -0.55 to -0.6, slightly becomes smaller as discount rate parameter increases. Similar change 
is also seen in intersection of demand rate 

D̂ . Fig.16 shows a plot of logarithm of the demand rate to 
its rank. Comparing fig.16 to fig.3, distribution of right side around logarithm of rank being equal to 
1.6 to 1.7 ( “shoulder” of distribution) in slightly upward in fig.16 than in fig.3, which reflects the 
decrease of DCs from 54 in 0B  to 50 in 5D . Rank-size coefficient of stock size 

S̂  is about -0.5 to 
-0.54, which is lower than that of demand rate, therefore spatial distribution of stock is more scattered 
than that of demand rate. Fig.17 shows a plot of logarithm of the stock to its rank in case 5D . 
Comparing fig.16 to fig.17, the difference in rank-size coefficients can be confirmed. 
 

5. Summary and conclusion 
The location characteristics of distribution centers obtained as the optimal location by the joint 
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inventory / distribution problem is simulated under different sets of parameters reflecting logistics and 
geographic. The location characteristics of these simulation results are analyzed through the rank-size 
coefficients estimated from demand rate and stock at DC. 

At first, simulation analysis for larger stock-out penalty parameter reflecting the stricter demand side 
requests clarified that location of DC tends to shift into the area of lower land rent, in order to have 
large inventory at DCs. Rank-size coefficient becomes lower as the increase in stock-out penalty 
parameter, suggests that if intolerant customers for stock-out are increased, the needs for DC with 
large warehouse are also increased at the lower demand area. Secondly, simulation for shorter 
replenishment intervals shows that if replenishment interval becomes shorter due to efficient 
production and logistic system, number of DC is increased. Thirdly, simulation for expressway toll 
discount cases reflecting logistics policy showed that higher discount rate would cause overall change 
in DC location, along with decrease in safety stock. However, expressway toll discount policy would 
not much influence on the rank-size coefficients.  

Remaining issues are as follows. In this analysis, the statistical problem of estimation of rank-size 
coefficient is ignored, but it is important to make hypothetical test between two parameters before and 
after the condition changes. Moreover, the concavity of rank-size distribution should be treated 
carefully.  
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