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Abstract: Urgency and perishability are highlighted during relief operation after the 2011 great 

east Japan earthquake. Perish rate is influenced by several reasons including poor preserving 

facilities. This paper presents a dynamic programming model to optimize decisions (i.e., “how 

much and when to order”) for replenishing a perishable item facing declining demand and 

urgency. An exponential distribution of declining demand is adopted. The results of the model 

for exponential distribution demand is compared with that for linear declining demand. The 

proposed model exhibits a variation in replenishment intervals and order quantity. Herewith, 

total cost of inventory changes for urgency and perishability. In addition, the trend of delayed 

satisfied demand in planning horizon have patterns that do not depend on parameter values 

rather depends on declining demand distribution type. 
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1. INTRODUCTION 

 

Mathematical modeling for disaster logistics (DL) was introduced couple of decades ago by 

Knott (1988). Altay and Green (2006) and Galindo and Batta (2013) provided a holistic review 

of the Operational Research/Management Science (OR/MS) models for DL until recent years. 

Both resources iterated the importance of mathematical models for DL. The importance of the 

improvement of DL mathematical model was stated. We have identified three issues that has 

not gained attention properly. First, relief demand declines over time. DL mathematical models 

consider a constant or uniform distributed demand throughout the relief operation period. 

However, the demand for relief items declines and the relief operation terminates when demand 

becomes too little (theoretically when the demand becomes zero). Figure 1 represents the 

declining trend of relief demand of bread and garments after the 2011 great east Japan 

mailto:rubeldas@irides.tohoku.ac.jp
mailto:mokmr@m.tohoku.ac.jp


Journal of the Eastern Asia Society for Transportation Studies, Vol.11, 2015 

 

709 

 

earthquake (GEJE). The y-axis in Figure 1 represents how many relief request are received 

from shelter. Declining demand is a natural phenomenon.  

 

(a) 

 

(b) 

Figure 1. Declining of relief demand, Here (a) for bread (b) for garments [Data 

collected from Sendai city office 2011]  

 

Another important aspect of post-disaster scenarios is “urgency,” which represents the 

degree of effectiveness of a relief item at the time of delivery. It is natural to think that higher 

urgency product should be delivered earlier. Moreover, the urgency for a particular relief item 

is not constant over time. This phenomenon is observed after 2011 GEJE. There was high 

demand for blanket aftermath of the 2011 GEJA. However after couple of weeks the weather 

warmed up and the urgency of blanket goes down. But the donors sent a large amount of blanket 

to affected areas. The authorities in affected areas faces difficulties in processing of the leftover 

blankets. The third issue is perishability. A perishable item is subject to a continuous loss in 

their masses or utilities throughout their lifetime due to decay, damage, spoilage, and plenty of 

other reasons. In practice, perishability is relevant to several relief items, such as fruits, 

medicine, blankets, and others. Some relief items (e.g., fruits) perish because of their 

characteristics and others perish because of improper warehouse facilities. 

Above mentioned three issues influence inventory management. One of the major 

concerns of inventory management is deciding on when and how much to order to minimize 

the total cost. This paper aims to develop a dynamic programming model for a perishable relief 

item using the following assumptions: a constant perish rate, declining demand, allowing 

backlogging with penalty, and considering the urgency. The solutions to the model determine 

an optimal replenishing schedule during a finite planning horizon to ensure minimum total cost 

associated with the inventory system. The proposed model exhibits variations in both the 

replenishment cycle length and the ordered quantities.  

The remainder of the paper is structured as follows. Section 2 explains state-of-art of 

disaster logistics. Section 3 consists of several sub-sections that explain the proposed model. 

Section 4 presents a numerical analysis using the proposed model and reports the results. 

Section 5 presents the conclusion of the paper and the summary of the study outcomes.  
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2. LITERATURE REVIEW 

 

The significance of studies on relief distribution had been addressed in several occasions and a 

number of optimization models are proposed for DL planning. Balcik and Beamon (2008) 

formulated a facility location model for storing relief, and the model aimed to maximize the 

demand coverage of the facility. Lin et al. (2010) utilized HAZUS-MH software to create 

earthquake scenarios and analyzed the effect of depot location, number of vehicles, and number 

of clusters on relief distribution. Campbell and Jones (2011) incorporated facility failure risks 

in formulating facility locations and optimal stocking quantity. 

Haghani and Oh (1996) formulated relief transportation issues as multi-commodity multi-

modal flow problems with time windows. Barbarosoğlu and Arda (2004) proposed a two-stage 

stochastic programming model to plan first-aid commodities for disaster-affected areas based 

on random demand. Özdamar et al. (2004) proposed a logistics model to minimize total 

unsatisfied demand without considering equality of delivery. Adivar and Mert (2010) 

introduced a fuzzy linear programming for relief collection from international communities 

after a disaster that minimizes logistics cost while maximizing credibility. Özdamar (2011) 

optimized helicopter operations in the last mile of relief distribution with the objective of 

minimizing the total mission time under the aviation constraint. Özdamar and Demir (2012) 

proposed a vehicle routing model that aims to minimize travel time and incorporates the idea 

of hierarchical cluster. 

In Fiedrich et al. (2000), a dynamic combinatorial optimization model was proposed to 

find the optimal resource rescue schedule with the goal of minimizing the total number of 

fatalities during the search and rescue (SAR) period, which refers to the first few days after the 

disaster. Sheu (2007 and 2010) introduced a novel approach of relief allocation depending on 

relief urgency. The model of Sheu (2007) consists of five steps: (1) Demand calculation, (2) 

Affected area grouping, (3) Ranking of area group, (4) Group based relief distribution and (5) 

Dynamic relief supply. 

Beamon and Kotleba (2006) developed an operational model of inventory ordering 

strategies in which demand is characterized as uniformly distributed. Lodree and Taskin (2008) 

formulated the inventory planning problem encountered by donor organizations using variants 

of the news-vendor model. Proactive actions to maintain inventory levels are compared with 

financial investment in an insurance policy. Demand is described as having a uniform 

distribution in the model. Das and Hanaoka (2014) extended the relief inventory model to 

consider stochastic demand and lead time for a large-scale disaster. Salmeron and Apte (2010) 

used a stochastic optimization model for resource planning prior to a disaster. The model 

includes different degree of severities in different regions after a hurricane. The degree of 

severities differentiates the demand in one zone to another zone. 
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In the above mentioned literature, relief urgency was utilized in spatial dimension. A new 

formula for temporal dimension is presented. In addition, perishability was not considered in 

any studies. Though several articles highlighted the importance of reducing wastage and poor 

warehouse facilities, the perishability was not formulated. A simple formula for representing 

perishability is utilized here. Furthermore, the consideration of declining relief demand is also 

adopted.  

  

 

3. METHODOLOGY 

 

Consider a large-scale earthquake has damaged a vast area. Relief items available in the affected 

areas are either destroyed by the earthquake or quickly depleted, necessitating the rapid 

deployment of relief items to reduce further human suffering. A policy maker plans for 

distributing a relief item in damaged area through a planning horizon, H. In the proposed system, 

no inventory is held at the beginning and at the end of replenishment cycle [j,k] along the 

planning horizon. The cycle starts with accumulating shortages from time j until time p, at 

which point a replenishment is scheduled. In this study, [j,p] is called the out of stock duration 

and the quantity of relief item during this period is called delayed satisfied demand. The 

quantity of the relief item received at time p equals the sum of the demand backordered during 

period [j,p] and the demand requirement in period [p,k]. The relief item is considered with a 

constant perish rate (θ) over time. Perishability of units occurs only when the item is effectively 

in stock, and no replacement of perished units occurs.  

The objectives of the proposed model are to identify the locations of p along the planning 

horizon and order quantity at each p. In other words, it aims to determine the optimal sequence 

of replenishment point p that minimizes total costs. The total cost consists of holding, shortage, 

operational, and setup costs. Per unit costs for holding, shortage and operational cost are H0, P0 

and C0 respectively. The setup cost for each order is A0. Inventory is continuously reviewed and 

replenishment is instantaneous; replenishment capacity is infinite and lead time is zero. Relief 

item shortage is completely backordered and incurs a shortage cost (or penalty cost). The 

realized shortage cost depends on urgency that has two parameters gamma (γ) and mu (μ).  

The demand decreases exponentially during the planning horizon of length H: 

 

𝐷(𝑡) = 𝑎0𝑒−𝑎1𝑡  𝑤ℎ𝑒𝑛 0 ≤ 𝑡 ≤ 𝐻 (1) 

 

where a0 and a1 are constant. 
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3.1 Holding Cost 

 

Let us consider the inventory level at time t, I(t), during a cycle, that is, 𝑗 ≤ 𝑡 ≤ 𝑘 . This 

inventory level declines gradually by the combined effect of demand and the perish rate. Note 

that no perishability effect occurs if no inventory is on stock. Therefore, the variation of I(t) 

with respect to time is: 

 

𝑑𝐼(𝑡)

𝑑𝑡
= −𝐼(𝑡)𝜃𝑡 − 𝐷(𝑡), 𝑗 ≤ 𝑡 ≤ 𝑘 

(2) 

 

By multiplying 𝑒𝜃𝑡 on both sides of eq (2), integrating by parts and replacing the demand 

function by eq (1) results in (Benkherouf, 1995): 

 

Inventory quantity, 𝐼(𝑡) = 𝑒−𝜃𝑡 ∫ 𝑎0𝑒−𝑎1𝑡𝑒𝜃𝑡𝑑𝑡
𝑘

𝑡
 

(3) 

 

Now, H0 represents the holding cost per unit time. Therefore, the holding cost for a cycle is 

written as: 

 

Holding cost, HC = 𝐻0 ∫ 𝑒−𝜃𝑡 ∫ 𝑎0𝑒−𝑎1𝑡𝑒𝜃𝑡𝑑𝑡
𝑘

𝑡

𝑘

𝑝
𝑑𝑡 

(4) 

=
𝐻0𝑎0

𝜃−𝑎1
∫ (𝑒(𝜃−𝑎1)𝑘𝑒−𝜃𝑡 − 𝑒−𝑎1𝑡)

𝑘

𝑝

𝑑𝑡 
(5) 

 

 

Eq (5) becomes easy to integrate. 

Now, the number of perished items in a cycle is  

 

𝑁(𝑡) = 𝐼(𝑡) − ∫ 𝑎0𝑒−𝑎1𝑡𝑑𝑡
𝑡

𝑗

 
(6) 

 

3.2 Shortage Cost Due to Delayed Satisfied Demand 

 

If relief items cannot be delivered to victims on time, the system incurs a shortage cost. This 

cost is larger when urgency value is high. “Realized shortage cost” by incorporating urgency is 

introduced, that changes with urgency. The realized shortage cost of a particular relief item is 

higher when that item has a higher urgency. If the shortage cost per unit item is 𝑃0 and shortage 

quantity is S, the realized shortage cost is equal to:   
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𝑅𝑆(𝑃𝑜 , 𝑆) = (1 + 𝛾𝑒−𝜇𝑡)𝑃0𝑆 (7) 

 

where  𝑅𝑆(𝑃𝑜 , 𝑆)  represents the realized shortage costs incurred and (1 + 𝛾𝑒−𝜇𝑡) 

represents the urgency with parameters γ and µ. It shows that urgency declines gradually, 

which indicates that urgency starts declining in the aftermath of a hazard. Therefore, urgency 

in the temporal dimension is required for designing inventory planning. 

The shortage quantity is satisfied after arrival of relief at the next replenishment point. 

The shortage quantity can be imagined as delayed satisfied demand, and is given at time t by: 

 

Shortage quantity, 𝑆(𝑡) = ∫ 𝑎0𝑒−𝑎1𝑡𝑑𝑡
𝑡

𝑗
,   𝑗 ≤ 𝑡 ≤ 𝑝 

(8) 

 

Now, P0 is the shortage cost per unit attributable to relief item shortage. As urgency 

decreases exponentially in eq (7), realized shortage cost also changes accordingly. The highest 

realized shortage cost is incurred during the aftermath of a disaster. 

   

Realized shortage cost, R𝑆 = 𝑃0 ∫ (1 + 𝛾𝑒−𝜇𝑡) ∫ 𝑆(𝑡)𝑑𝑡
𝑡

𝑗
𝑑𝑡

𝑝

𝑗
 

(9) 

= 𝑃0 ∫ (1 + 𝛾𝑒−𝜇𝑡) ∫ 𝑎0𝑒−𝑎1𝑡𝑑𝑡
𝑡

𝑗

𝑑𝑡
𝑝

𝑗

 
(10) 

= 𝑃0 ∫ (1 + 𝛾𝑒−𝜇𝑡)(−
𝑎0

𝑎1
𝑒−𝑎1𝑡 +

𝑎0

𝑎1
𝑒−𝑎1𝑗)𝑑𝑡

𝑝

𝑗

 
(11) 

  

Eq (11) is easy to integrate.  

 

3.3 Operational Cost 

   

A cycle starts with accumulating shortages from time j to time p, at which time replenishment 

is scheduled. The total amount of relief items ordered at time p equals the sum of the demand 

backordered during period [j,p] and the demand requirement in period [p,k].  

Ordered quantity, 𝑄(𝑝) =  𝐼(𝑝) + 𝑆(𝑝) (12) 

Now, C0 is the operational cost per unit.  

 Operational cost, OC = 𝐶0𝑄(𝑝) (13) 

After replacement with eq (8) and eq (3) 

𝐶 = 𝐶𝑜 (𝑒−𝜃𝑝 ∫ 𝑒𝜃𝑡𝑎0𝑒−𝑎1𝑡𝑑𝑡
𝑘

𝑝

+ ∫ 𝑎0𝑒−𝑎1𝑡𝑑𝑡
𝑝

𝑗

) 
(14) 

Eq (14) becomes easy to integrate. 
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3.4 Total Cycle Cost 

 

Total cycle cost consists of realized shortage cost (RS), holding cost (HC), operating cost (OC), 

and setup cost (A0):   

 

Total cycle cost, 𝑊(𝑗, 𝑝, 𝑘) = 𝐴0 + 𝑅𝑆 + 𝐻𝐶 + 𝑂𝐶 (15) 

 

Now, replacement with eqs (11), (5), and (14), total cycle cost becomes: 

 

𝑊(𝑗, 𝑝, 𝑘) = 𝐴0 + 𝑃0 ∫ (1 + 𝛾𝑒−𝜇𝑡)(−
𝑎0

𝑎1
𝑒−𝑎1𝑡 +

𝑎0

𝑎1
𝑒−𝑎1𝑗)𝑑𝑡

𝑝

𝑗

+
𝐻0𝑎0

𝜃−𝑎1
∫ (𝑒(𝜃−𝑎1)𝑘𝑒−𝜃𝑡 − 𝑒−𝑎1𝑡)

𝑘

𝑝

𝑑𝑡

+ 𝐶𝑜 (𝑒−𝜃𝑝 ∫ 𝑒𝜃𝑡𝑎0𝑒−𝑎1𝑡𝑑𝑡
𝑘

𝑝

+ ∫ 𝑎0𝑒−𝑎1𝑡𝑑𝑡
𝑝

𝑗

) 

(16) 

 

For given j and k, the optimal replenishment point p in the cycle is obtained by 

differentiating eq (16). Because the value of p depends on the value of j, we replace 𝑘 = 𝑗 + 𝛼 

and 𝑝 = 𝑗 + 𝛽, where α > β. After replacing the k and p values, eq (16) with respect to β is 

differentiated and the outcome set equal to zero for locating β: 

 

𝛿𝑊(𝑗, 𝑝, 𝑘)

𝛿𝛽
= 0 

(17) 

 

After several algebra operations of eq (17): 

 

𝑊𝛽(𝑗, 𝛽, 𝑘) =
𝐻0𝑎0

𝜃−𝑎1
(−𝑒(𝜃−𝑎1)(𝑗+𝑎)−𝜃(𝑗+𝑏) + 𝑒−𝑎1(𝑗+𝑏))

+ 𝑃0 (−
𝑎0

𝑎1
𝑒−𝑎1𝑗−𝑎1𝑏 +

𝑎0

𝑎1
𝑒−𝑎1𝑗

−
𝑎0𝛾

𝑎1
𝑒−𝑎1𝑗−𝜇𝑗(𝑒(−𝑎1−𝜇)𝑏) +

𝑎0𝛾

𝑎1
𝑒−𝑎1𝑗−𝜇𝑗(𝑒−𝜇𝑏))

+ 𝐶𝑜 (−𝜃
𝑒−𝜃(𝑗+𝑏)𝑎0

𝜃 − 𝑎1
𝑒(𝜃−𝑎1)(𝑗+𝑎) + 𝑎1

𝑒−𝑎1𝑗−𝑏𝑎1𝑎0

𝜃 − 𝑎1

+ 𝑎0[𝑒−𝑎1(𝑗+𝑏)]) 

(18) 
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Because obtaining a closed-form solution to eq (18) is difficult, the replenishment point 

p (𝑝 = 𝑗 + 𝛽) is estimated using a numerical search technique. A bisection algorithm is used to 

find the location of β* (hence, p* for given j). 

 

3.5  Sequences of Replenishment Points 

 

The objective of the proposed model is to determine the optimal sequence of replenishment 

point p along the planning horizon H that minimizes total system costs. The optimal sequence 

of replenishment points may be determined by solving the dynamic programming equations: 

 

𝑇𝐶𝑘 = 𝑀𝑖𝑛{𝑇𝐶𝑗 + 𝑊(𝑗, 𝑝∗, 𝑘)} (19) 

𝑇𝐶0 = 0 (20) 

 

The forward recursive procedure is used to determine the minimal total cost over planning 

horizon H. To solve the model, a dynamic programming algorithm is proposed by Chen (1998).  

 

 

4. DATA AND RESULTS 

 

A numerical example is presented to show the effect of different demand distributions, urgency 

and perishability of a relief item. The values used in the numerical example are useful for 

illustration purposes but may not match values that might be estimated by the ultimate users of 

the model.  

Parameters of demand function are ao and a1. The values of ao and a1 are set to 25 and 

0.1, respectively. The planning horizon (H) is assumed to be fixed and set to a value of 50 days. 

The demand function is integrated over time horizon. Thus total demand in the planning horizon 

is 248.3 unit. Relief item perishes due to several reasons including poor preserving facilities 

after a disaster. Perish rate (θ) is set to 0.002 unit/day. It is natural to assume that the shortage 

cost per unit (P0) is higher than the holding cost per unit (H0). Note that the shortage cost per 

unit does not depend on urgency parameters. However, realized shortage cost is dependent on 

urgency parameter. Here, P0 and H0 are set to 1 $ and 0.3 $ respectively. The operational cost 

per unit (C0) is set between P0 and H0. The value of C0 is equal to 0.5 $. The parameters for 

urgency (γ and µ) are set to 10 and 0.08, respectively. The value of gamma (γ) changes in 

different scenarios. Urgency is used to generate the realized shortage cost, policy makers can 

regulate the parameters of urgency. If γ is equal to zero, the value of urgency becomes one. 

Therefore, the realized shortage cost and the shortage cost become identical values. Note that, 

different scenarios are created by altering the value of perish rate (θ) and gamma (γ). Table 1 
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presents a scenario description and the computational results for different scenarios. The perish 

rates for scenarios 1 to 3 are varied and the urgency parameter (γ) value is kept fixed. In contrast, 

scenarios 1, 4, and 5 have characteristics of different urgency parameter (γ) values for a fixed 

perish rate (θ). Finally, the ordering fixed cost (A0) is equal to 30 $. 

 

According to Table 1, total cost and out of stock are the highest for higher perish rate. A 

comparison between scenarios 1, 4, and 5 reveals that the total out of stock duration is shorter 

and the quantity perished is larger for higher urgency values. On the other hand, total out of 

stock during is longer for higher perish rate (in scenario 1, 2, and 3). Therefore, the model 

rationally responds to a changing environment. 

Now, we define service level (SL) as in eq (21): 

SL = 1 −
𝑂𝑢𝑡 𝑜𝑓 𝑠𝑡𝑜𝑐𝑘 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛
 

(21) 

  

Figure 2 presents the computed SL for each scenario. The service level changes with the 

combined effects of γ and θ. The service level becomes higher for larger gamma value. It 

shows that policy maker can impose larger value of gamma for improving service level. 

 

Table 1. Description of scenarios and results 

Scenario description Results 

Scenario 
γ θ 

Total 

Cost($) 

Out of 

Stock(unit) 

Total 

shortage cost($) 

Holding 

cost($) 

perished 

quantity($) 

1 10 0.002 429.55 2.62 7.12 117.88 0.79 

2 10 0.011 434.11 2.90 8.79 118.98 4.36 

3 10 0.020 438.70 3.24 10.97 119.58 7.97 

4 15 0.002 431.61 1.99 5.49 121.56 0.81 

5 25 0.002 433.42 1.36 3.76 125.08 0.83 

 

Figure 2. Service levels in different scenarios 
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To elaborate detailed results, the outcomes of scenario 1 in Table 2 is presented. It has 

nine (9) cycles. The start and the end points for each cycle period are tabulated in the second 

column in Table 2. Cycle lengths are different during the planning horizon. Generally length of 

cycle period become longer sequentially. Table 2 shows the relief items’ arrival time (p*) after 

the start of each cycle. The replenishment point in each cycle is also tabulated in the third 

column. Generally, a longer cycle length leads to an item that perishes faster. Table 2 provides 

the holding cost, the shortage cost, the ordered quantity, and the perished quantity for each cycle. 

To observe the effect of different declining demand and urgency, a sensitivity analysis is 

conducted and compare the results from four situations. Table 3 presents the properties of the 

four types of situations. Type A represents the exponential declining demand and urgency are 

included in the computation. Similarly Type B also include urgency but demand declines 

linearly. Type C and D does not include urgency in the computation (i.e,γ= 0). Herewith, 

demand function in Type C is exponential declining function and that in Type D is linear 

declining function. The differences of total demand between linear and exponential distribution 

is 0.5%. Note that perish rate is set to 0.08. The planning horizon and other parameter values 

are kept same as before. 

Figure 3 to Figure 6 illustrate the results of the four situations. An analysis of the four 

situations shows that the first and the last cycles have irregular shapes. The irregularity of first 

cycle occurred because the value of the initial cost (TC0) is zero. The last cycle is irregular 

because the algorithm is based on a forward recursive procedure for a fixed time horizon. The 

model brings a zero inventory level after satisfying all of the demand in the last cycle. 

Table 2. Results of scenario 1 

Cycle 

number 

Cycle perio

d 

[j,k] 

p* (Day) Holding 

Cost($) 

Shortage 

cost($) 

Ordered 

quantity(unit) 

perished 

quantity(unit) 

1 [0,2] 0.049 12.49 0.34 45.40 0.083 

2 [2,4] 2.057 10.15 0.31 37.17 0.068 

3 [4,6] 4.065 8.23 0.29 30.43 0.055 

4 [6,9] 6.107 14.11 0.57 35.65 0.094 

5 [9,12] 9.131 10.27 0.51 26.41 0.068 

6 [12,16] 12.201 12.48 0.73 24.91 0.083 

7 [16,21] 16.305 11.95 0.87 19.94 0.080 

8 [21,27] 21.457 9.43 0.89 13.88 0.063 

9 [27,50] 28.251 28.77 2.62 15.31 0.19 

Total   117.88 7.13 249.1 0.781 
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Among the four types of situations, the total number of replenishment points is smaller 

while demand distribution is exponentially distributed. In the comparison between Type A and 

C, the total number of replenishment point is larger when urgency is incorporated. Similarly 

Type B has more replenishment points than Type D. As relief demand (exponentially or 

linearly) declines over time, the order quantity also declines. This finding shows that 

mathematical model with declining demand has potential to reduce cost.  

For linear demand declining function (for Type B and D), the quantity of delayed satisfied 

demand shows opposite trend. The delayed satisfied demand increases gradually while urgency 

is considered (Type C). However, the demand satisfied demand decreases while urgency is not 

incorporated (Type D). On the hand, for exponential declining demand function, the quantity 

of delayed satisfied demand follows similar trend (Type A and C). 

Except for the first and last cycles, the inventory level after order arrival decreases for all 

situations. Finally, the inventory level after order arrival decreases for type C. 

 

  

Figure 3. Inventory level for Type A Figure 4. Inventory level for Type C 

Table 3. Properties of four types of situations 

Type Properties Mathematical explanation 

A Exponential declining demand and 

urgency incorporated 

D(t) = 25𝑒−0.1t , θ=0.08, and 

γ=2 

B Linear declining demand and urgency 

incorporated 

D(t) = 10 − 0.2t ,θ=0.08, and 

γ=2 

C Exponential declining demand and no 

urgency 

D(t) = 25𝑒−0.1t,θ=0.08, but γ=0 

D Linear declining demand and no urgency   D(t) = 10 − 0.2t ,θ=0.08, and 

γ=0 
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Figure 5. Inventory level for Type B Figure 6. Inventory level for Type D 

 

From the analysis, it is found that declining demand properties, urgency and perishability 

have significant influence on decision making on relief ordering policy. It is also found that 

there is tradeoff between perish rate and post disaster cost. Therefore, policy makers can invest 

money for improving facilities such as perish rate become smaller. It will be helpful for reducing 

the total cost by decreasing perished quantity. Since available relief after a disaster is limited, it 

is essential for adopting policies for decreasing perish rate. In addition, policy maker has 

sufficient control on urgency value to meet sufficient service level in relief distribution. Since 

model results are not dependent on parameter value, the model can be utilized for the values 

for different situations. Demand is an important parameter for the model. It can be determined 

from historical relief data. Since relief data is limited, demand can be assumed standard 

function for planning purpose. There are several parameters (e.g., γ and H) that depends on 

decision maker’s objective. Cost parameters are country specific values that are easy to get by 

observing historical relief operation. 

    

 

5. CONCLUSION 

 

This proposed dynamic programming model incorporated urgency and perishability for 

decision making on relief ordering. The replenishment intervals vary for different parameters 

however there is a trend in variation. The service level also changes between replenishment 

cycles. As a result, the model generates a better solution than other optimization models with 

fixed order intervals and/or fixed service level. The model is compared for two demand 

distributions and different urgency parameter (gamma) values. If we utilize different values of 

demand distribution, the inventory level and replenishing point show similar trend. However, 

values for both inventory level and replenishing points change. 

The results of the study lead to the following conclusions. Urgency and perishability has 
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significant influence on relief ordering. These issues affect the system service level. A decision 

maker must plan for relief ordering considering the possible wastage due to perishability. 

Although the model presented is flexible, the main restrictions to its practical 

implementation are twofold: continuous review of the stock is assumed and the shape of the 

urgency function is not known with certainty. Fortunately, organizations are making efforts to 

collect relief operational data, allowing for a true urgency function to be generated in the future. 

Herewith, the disposal cost for perished item was not incorporated.   
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